504 research outputs found

    Flow of the Coarse Grained Free Energy for Crossover Phenomena

    Full text link
    The critical behaviour of a system of two coupled scalar fields in three dimensions is studied within the formalism of the effective average action. The fixed points of the system are identified and the crossover between them is described in detail. Besides the universal critical behaviour, the flow of the coarse grained free energy also describes the approach to scaling.Comment: 18 pages, latex, 4 figures appended as uuencoded fil

    Designer Nets from Local Strategies

    Full text link
    We propose a local strategy for constructing scale-free networks of arbitrary degree distributions, based on the redirection method of Krapivsky and Redner [Phys. Rev. E 63, 066123 (2001)]. Our method includes a set of external parameters that can be tuned at will to match detailed behavior at small degree k, in addition to the scale-free power-law tail signature at large k. The choice of parameters determines other network characteristics, such as the degree of clustering. The method is local in that addition of a new node requires knowledge of only the immediate environs of the (randomly selected) node to which it is attached. (Global strategies require information on finite fractions of the growing net.

    Solving non-perturbative flow equations

    Get PDF
    Non-perturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behaviour, with associated critical exponents, can be inferred with good accuracy.Comment: Latex, 14 pages, 2 uuencoded figure

    Kauffman Boolean model in undirected scale free networks

    Full text link
    We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections P(k)kγP(k)\sim k^{-\gamma}. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for 3<γ<3.53<\gamma < 3.5. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for γ<3\gamma<3, the position of the critical line in Kauffman model seems to be an important exception from the rule. Second, since gene regulatory networks are characterized by scale-free topology with γ<3\gamma<3, the observation that in finite-size networks the mentioned transition moves towards smaller γ\gamma is an argument for Kauffman model as a good starting point to model real systems. We also explain that the unattainability of the critical line in numerical simulations of classical random graphs is due to percolation phenomena

    Stable and unstable attractors in Boolean networks

    Full text link
    Boolean networks at the critical point have been a matter of debate for many years as, e.g., scaling of number of attractor with system size. Recently it was found that this number scales superpolynomially with system size, contrary to a common earlier expectation of sublinear scaling. We here point to the fact that these results are obtained using deterministic parallel update, where a large fraction of attractors in fact are an artifact of the updating scheme. This limits the significance of these results for biological systems where noise is omnipresent. We here take a fresh look at attractors in Boolean networks with the original motivation of simplified models for biological systems in mind. We test stability of attractors w.r.t. infinitesimal deviations from synchronous update and find that most attractors found under parallel update are artifacts arising from the synchronous clocking mode. The remaining fraction of attractors are stable against fluctuating response delays. For this subset of stable attractors we observe sublinear scaling of the number of attractors with system size.Comment: extended version, additional figur

    Interplay between network structure and self-organized criticality

    Full text link
    We investigate, by numerical simulations, how the avalanche dynamics of the Bak-Tang-Wiesenfeld (BTW) sandpile model can induce emergence of scale-free (SF) networks and how this emerging structure affects dynamics of the system. We also discuss how the observed phenomenon can be used to explain evolution of scientific collaboration.Comment: 4 pages, 4 figure

    Does dynamics reflect topology in directed networks?

    Full text link
    We present and analyze a topologically induced transition from ordered, synchronized to disordered dynamics in directed networks of oscillators. The analysis reveals where in the space of networks this transition occurs and its underlying mechanisms. If disordered, the dynamics of the units is precisely determined by the topology of the network and thus characteristic for it. We develop a method to predict the disordered dynamics from topology. The results suggest a new route towards understanding how the precise dynamics of the units of a directed network may encode information about its topology.Comment: 7 pages, 4 figures, Europhysics Letters, accepte

    Topology of biological networks and reliability of information processing

    Full text link
    Biological systems rely on robust internal information processing: Survival depends on highly reproducible dynamics of regulatory processes. Biological information processing elements, however, are intrinsically noisy (genetic switches, neurons, etc.). Such noise poses severe stability problems to system behavior as it tends to desynchronize system dynamics (e.g. via fluctuating response or transmission time of the elements). Synchronicity in parallel information processing is not readily sustained in the absence of a central clock. Here we analyze the influence of topology on synchronicity in networks of autonomous noisy elements. In numerical and analytical studies we find a clear distinction between non-reliable and reliable dynamical attractors, depending on the topology of the circuit. In the reliable cases, synchronicity is sustained, while in the unreliable scenario, fluctuating responses of single elements can gradually desynchronize the system, leading to non-reproducible behavior. We find that the fraction of reliable dynamical attractors strongly correlates with the underlying circuitry. Our model suggests that the observed motif structure of biological signaling networks is shaped by the biological requirement for reproducibility of attractors.Comment: 7 pages, 7 figure

    Annealing schedule from population dynamics

    Full text link
    We introduce a dynamical annealing schedule for population-based optimization algorithms with mutation. On the basis of a statistical mechanics formulation of the population dynamics, the mutation rate adapts to a value maximizing expected rewards at each time step. Thereby, the mutation rate is eliminated as a free parameter from the algorithm.Comment: 6 pages RevTeX, 4 figures PostScript; to be published in Phys. Rev.

    Synchronization of networks with variable local properties

    Full text link
    We study the synchronization transition of Kuramoto oscillators in scale-free networks that are characterized by tunable local properties. Specifically, we perform a detailed finite size scaling analysis and inspect how the critical properties of the dynamics change when the clustering coefficient and the average shortest path length are varied. The results show that the onset of synchronization does depend on these properties, though the dependence is smooth. On the contrary, the appearance of complete synchronization is radically affected by the structure of the networks. Our study highlights the need of exploring the whole phase diagram and not only the stability of the fully synchronized state, where most studies have been done up to now.Comment: 5 pages and 3 figures. APS style. Paper to be published in IJBC (special issue on Complex Networks' Structure and Dynamics
    corecore